
Article

Construct Meaning in Multilevel Settings

Laura M. Stapleton

Ji Seung Yang

Gregory R. Hancock

University of Maryland

We present types of constructs, individual- and cluster-level, and their con-

firmatory factor analytic validation models when data are from individuals

nested within clusters. When a construct is theoretically individual level,

spurious construct-irrelevant dependency in the data may appear to signal

cluster-level dependency; in such cases, however, and consistent with theory, a

single-level analysis with a correction for dependency may be appropriate.

Regarding cluster-level constructs, we discuss two types—shared and config-

ural—and present appropriate validation models. Illustrative validation anal-

yses with individual, shared, and configural constructs are provided using

empirical data as well as simple simulations demonstrating the spurious effects

that can occur with nested data. The article concludes with future directions to

be examined in construct validation in multilevel settings.

Keywords: multilevel; validity; confirmatory factor analysis

In social science research, latent constructs of interest are typically vali-

dated using not only theoretical arguments but also empirical data from sets of

items intended to measure those constructs. When data are collected in multi-

level settings (e.g., students within schools or children within families), a

construct of interest might even exist at multiple levels. In this article, we

consider how researchers can approach construct meaning and construct vali-

dation when working with data that are nested. In Section 1, we briefly review

the confirmatory factor analysis (CFA) approach to structural validation of a

construct hypothesized to underlie multiple item responses and discuss the

extension of the single-level approach to a simple multilevel CFA (MCFA)

when data are nested. In Section 2, we try to bring clarity to the murky

conceptual landscape that exists when considering measurement models at

both the individual and the cluster levels, emphasizing distinctions between

constructs at different levels and, importantly, between different types of con-

structs at the cluster level. In this section, we define five distinct models that

might be posited using the same data, depending on conceptual considerations.

In Section 3, we present examples of construct structure validation processes

in several contexts using data from the National Center for Education Statis-

tics, while in Section 4, we present simulation demonstrations of contexts
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where, with an individual-level construct, spurious intraclass correlations

(ICCs) and spurious cluster-level covariance can result. Finally, we suggest

practical modeling guidelines and conclude with future extensions that may be

considered.

1. Validation Evidence for the Structure of a Measure

Measurement of a person’s motivation, of a child’s knowledge level, or of a

teacher’s degree of job satisfaction is typically accomplished via the combina-

tion of responses to several questionnaire or test items. Just because multiple

item responses are used, however, does not assure that any single aggregate

measure of those responses has adequate validity. Messick (1989, 1995) argued

that a thorough assessment of the use of a measure should attend to, and provide

evidence for, many aspects of construct validity; central to the current article is

the structural aspect, which addresses the fidelity of any scoring structure

(moving from items to an aggregate score), including the aggregation mechan-

ism, any scoring criteria and rubrics, and the application of those criteria and

rubrics.

1.1. Single-Level CFA and Reliability

Currently, the use of CFA is ubiquitous when documenting the dimension-

ality and reliability of scores on an instrument designed to measure psycholo-

gical processes or states (Brown, 2015). As a simple example, suppose a

researcher develops a set of 4 items intended to tap some construct (x) repre-

senting a dimension of a person’s opinion or belief. The researcher hopes to use

a combination of these items (e.g., a sum, average, or weighted composite) to

represent the construct in future research. In this case, a CFA process can be

used to determine whether there is empirical support for the hypothesized

construct’s measurement. A model for this construct, ignoring the mean struc-

ture for simplicity, may be shown as in Figure 1, with the accompanying

measurement equation:

x ¼ λxþ ε; ð1Þ

where x is a p � 1 vector of observed responses from a respondent on p items,

λ is a p � 1 vector of loadings relating the items to the underlying construct x,

and ε is a p � 1 vector of error terms for the observed variables with an

assumed multivariate normal covariance matrix Θ (which is diagonal in this

example but is not generally required to be so). Although we have presented

the measurement structure in terms of a single construct here and throughout

this article, the model extends to multiple constructs.

If such a model is found to be plausible, given the observed covariance

matrix for the item responses in a sample data set, then some support for
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the hypothesized structure of the measure is gained. Reliability of latent con-

struct score estimates can then be estimated by a range of measures, including

those that use parameter estimates from the CFA. One measure, utilized in this

article, is composite reliability, o (McDonald, 1970, 1978, 1999; see also Ray-

kov, 1997), which is defined as follows: where i indexes the item, f refers to

the factor variance, and y represents the residual item variance.

o ¼

Xp

i

li

 !2

f

Xp

i

li

 !2

fþ
Xp

i¼1

yi

: ð2Þ

While the internal consistency coefficient a (Cronbach, 1951) is often used

as a measure of scale reliability, it assumes that all items load on a single

underlying construct and are t equivalent (i.e., all items are equally correlated

with the underlying construct). Alternatively, o assumes only that there is a

congeneric scale and allows items to demonstrate variability in strength of

relation with the underlying construct. While maximal reliability has also been

proposed (see Hancock & Mueller, 2001), its performance in multilevel models

has been questioned (Geldof, Preacher, & Zyphur, 2014) and is not addressed in

this article.

ξ1

X1 X2 X3 X4

ε1 ε2 ε3 ε4

ϕ11

θ11 θ22 θ33 θ44

λ λ

λλ

FIGURE 1. Single-level factor model.
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1.2. Multilevel CFA and Reliability

A complication arises, however, when data are collected within nested set-

tings, such as students within schools and children within families. The possi-

bility for structural validation can occur at both levels as well as at an aggregate

overall level; indeed, multilevel researchers have recently suggested conducting

the validation at both the within-cluster and between-cluster levels (Geldhof,

Preacher, & Zyphur, 2014; Forer & Zumbo, 2011; Zyphur, Kaplan, & Christian,

2008). In this MCFA approach, each observed variable is parsed into within and

between components.

x ¼ �W þ �B; ð3Þ

where �W represents a p � 1 vector of cluster mean–centered deviations (or

within-cluster processes) and �B represents a p � 1 vector of latent cluster

means (or between-cluster processes). The measurement model is then

hypothesized on two covariance matrices, one for within-cluster (cluster

mean centered) variability and the other for between-cluster variability

(conceptually related to covariances of the cluster means; see Muthén,

1991):

�W ¼ λWxW þ εW and ð4Þ

�B ¼ λBxB þ εB: ð5Þ

The combined measurement model, linking the observed variables to the

underlying latent factors, thus becomes:

x ¼ λW ξW þ εW þ λBξB þ εB; ð6Þ

where each component of the single-level CFA model is now represented at both

the within-cluster and between-cluster levels, as shown in Figure 2 for our

context of a unidimensional latent structure at each level. Dashed circles are

used to represent the components that have been separated into within-cluster

and latent cluster-level processes. The within-cluster-level structure is shown in

the bottom half of Figure 2 and the between-cluster structure is shown at the top,

with subscripts of W and B, respectively.

Literature exists evaluating the statistical equivalence of these models with

hierarchical linear models (Li, Duncan, Harmer, Acock, & Stoolmiller, 1998;

Mehta & Neale, 2005), and reliability measures for latent scores from these

models have been proposed (Raykov, 2009; Raykov & Marcoulides, 2006;

Raykov & Penev, 2010). Raykov’s procedures, however, assume a single

reliability value aggregated over both the within-level and between-level struc-

ture and thus assume an individual construct with no cluster-level construct

that influences item responses above and beyond differences in the latent

means for individuals across clusters. We refer to this assumed condition as

the existence of only a configural cluster-level factor and expand on its
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definition in Section 2. Geldhof, Preacher, and Zyphur (2014) have proposed

to extend estimation of o to the within and between portions of the model and

thus any set of items might have two reliability estimates: within-cluster and

between-cluster.

In nested data settings, with the measurement of cluster-level constructs, a

variety of measures are used to evaluate whether item responses show some

degree of clustering as would be expected for a construct at the cluster level.

One such oft-used measure is the ICC, also referred to as ICC(1) (Shrout &

ξB1

X1 X2 X3 X4

ϕB11

η1B

η1W η2W η3W η4W

η2B η3B η4B

ξW1

ϕW11

λλ

λ

λ

λ

λ

λλ

FIGURE 2. Two-level factor model.

Note: Each h component also has a residual with variance y, not shown for simplicity.
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Fleiss, 1979). ICC(1) for a single manifest item is defined as:

ICCð1Þ ¼
s2

hB

s2
hB
þ s2

hW

; ð7Þ

where s2
hB

represents the variability of the cluster-level component and s2
hW

represents the variability of the within-cluster component and is thus interpreted

as the proportion of variance in an observed variable that is found at the cluster

level. Shrout and Fleiss presented a second measure of clustering, referred to as

ICC(2) and used in multilevel models as a measure of reliability of cluster

components (Raudenbush & Bryk, 2002), estimated as:

ICCð2Þ ¼
s2

hB

s2
hB
þ s2

hW

n:

; ð8Þ

where n. is the average cluster size for an estimate of average reliability over

all clusters or where n. is nj to obtain a reliability estimate for a given cluster

j. The ICC(2) estimate can thus be used to determine the number of measures

needed from a given cluster to result in a sufficient level of reliability

(Raudenbush & Bryk, 2002). Additionally, ICC(2) is mathematically equiv-

alent to a special case of the generalizability coefficient for group means

when persons are nested within clusters and crossed with fixed items (see

Kane & Brennan, 1977, for more details). The richer discussion on reliability

of group mean scores in the context of norm- and criterion-referenced inter-

pretation is available in the framework of generalizability theory where

sources of variance in observed scores are specified and portioned to con-

ceptualize reliability and are available in Cronbach, Gleser, Nanda, and

Rajaratnam (1972), O’Brien (1990), and Brennan (1995). We do not include

the analogical discussion on reliability with respect to latent variables in

MCFA models in this article, as our focus is on structural validity; however,

reliability of latent group means deserves further extensive development and

discussion in future work.

Somewhat absent in the educational research literature regarding these MCFA

measurement approaches, however, is a discussion of whether a multilevel

approach to the validation exercise is even conceptually appropriate. In the next

section, we propose five CFA models that might be utilized with nested data; as

will be explained, a key distinction among these models is whether it is hypothe-

sized that the construct of interest exists at an individual level only or is of

interest at the cluster level as well.

2. Conceptual Issues in Structural Validation in a Multilevel Context

We argue that three central issues must be addressed when obtaining evidence

of measurement structure under nested data settings: (1) the ultimate unit (or
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level) of interest in the measurement process (individual or cluster levels); and if

interested in individual-level constructs (2) the causes of any homogeneity in

item responses within clusters and (3) the intended uses of scores. These issues

are addressed within the two large subsections that follow, one focused on

individual-level constructs and one on cluster-level constructs. Overall, we pro-

pose considering five different types of models, as listed in Table 1, when

considering construct validation with nested data. Across the top of the columns

are the model names and within each column we display the level-specific con-

struct that is (or is not) modeled and interpreted, possible use of the construct, and

related treatments in the literature. Each of these model types is described in

detail in the subsections that follow.

2.1. Individual as Unit of Interest

At the individual level, it is expected that the hypothesized construct is rele-

vant to the individual responding, and therefore scores on the measure should

reflect individual variability. Models 1, 2, 4, and 5 in Table 1 include such a

construct. There may be no assumption that a cluster-level true score (what we

will refer to as a shared cluster-level construct) exists; some researchers, how-

ever, have implied that whenever manifest item scores exhibit clustering, a true

score at the cluster level is responsible for part of the score (Bliese, 2000; Forer &

Zumbo, 2011; Geldhof et al., 2014). Geldhof et al. stated that for construct

validation, ‘‘level-specific reliability estimates . . . are generally preferable to

single-level estimates whenever ICCs are nontrivial (i.e., �.05)’’ (p. 89). Simi-

larly, Bliese suggested that ‘‘when an individual measure . . . has an ICC(1)

value larger than zero, this indicates that an aggregate variable will partially

reflect common environmental factors’’ (p. 374). Forer and Zumbo also stated

that the ICC(1) ‘‘represents the proportion of individual variance that is influ-

enced by, or depends on group membership’’ (p. 241). In reading those state-

ments, an applied researcher might infer that a true cluster construct must exist

that causes or influences the environment. However, such an impression would

imply that moving an individual from one cluster to another would result in a

modification of that individual’s item responses due to a difference in true cluster

constructs. We argue, however, that researchers should consider the cause of the

homogeneity within clusters prior to settling on an MCFA approach to validate

measurement structure.

Suppose a researcher was evaluating a measure of lactose intolerance for use

in a school-aged population. A researcher might have developed five question-

naire items hypothesized to tap the latent lactose intolerance construct and, for

validation purposes, administered the items to students who are nested within

schools. The items inquire about the degree of severity, after consumption of

products containing lactose, of a set of physical reactions: diarrhea, abdominal

cramping, vomiting, audible bowel sounds, and flatulence or gas (Casellas,

Stapleton et al.
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Varela, Aparici, Casaus, & Rodriguez, 2009). We contend that lactose intoler-

ance is a completely individual measure, not able to be influenced by a school or

environmental effect. It is very likely, however, that responses to these items will

display a nonnegligible ICC. The reason is that schools will vary in terms of their

membership according to ethnic origin of the individuals. Medical research has

confirmed that lactose maldigestion differs by subpopulation depending on geo-

graphic origin, sometimes greatly so, with those of European origin having the

lowest severity of the condition (Scrimshaw & Murray, 1988). Because schools

differ in terms of the proportion of students by region of origin, levels of

responses to each of the five symptom items will differ as well, resulting in an

item ICC(1) above zero. We consider this positive ICC(1) a spurious ICC, a

function of a selection process. When hypothesizing a latent construct, a researcher

should bring a clear theoretical argument regarding whether a measure demon-

strates a positive ICC due to a true cluster construct or whether the positive ICC

represents a spurious relation. As demonstrated in Section 4, the observed statistics

in a single study do not provide information to the researcher regarding which of

these situations is correct. Thus, in the absence of a study moving individuals

across clusters to examine whether their levels on a response variable change or

the availability of auxiliary data that may shed light on possible existence of

informative subpopulations within clusters, theory is absolutely crucial.

If a researcher believes that any cluster dependency is spurious, then a design-

based approach (Stapleton, 2013) to validation of a measure’s structure is appro-

priate. A design-based approach allows an analyst to adjust the standard error

estimates and model fit indices, given the dependency of item responses of

individuals within clusters. The model parameter estimates will provide a

single-level, aggregate of the relation between item responses and constructs.

While this approach may obscure possible cross-level noninvariance (Zyphur

et al., 2008), its use may be appropriate in conditions such as those demonstrated

in Section 4. Two design-based estimation approaches for CFA that are currently

available to the researcher in many software programs are linearization (Aspar-

ouhov & Muthén, 2005; Stapleton, 2006) and replication (Asparouhov &

Muthén, 2010; Stapleton, 2008). These methods are briefly explained in Section

1 of the supplement materials, available in the online version of the journal.

An issue that must be addressed when working with nested data and wishing

to measure a construct at the individual level only is to consider the future use of

the measure. This issue is related to determining the (sub)population for which it

is important to validate the measure. If a researcher was planning to use the

measure across a broad population in the future (that may or may not be nested

within clusters) and intended to use the measure in a single-level model, then the

model shown in the first column of Table 1 with a design-based estimation

approach to validation is appropriate. If, however, the researcher intended to use

the measure within a cluster, to compare individuals and their relative position

within only a specific cluster, then a within-cluster approach to validation would
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provide within-cluster reliability coefficients that are more suitable to the future

planned utilization of the measure. This approach, referred to in Table 1 as Model

2 (within cluster), can be conducted in one of the two ways: analysis of cluster-

centered data or an MCFA. In an analysis of cluster-centered data, a single-level

CFA can be conducted based on a pooled within-cluster covariance matrix (Hox,

2002). This type of analysis is very straightforward and it would restrict the

interpretation to the structure of responses relative to others in the same cluster.

To conduct an MCFA, the model shown in Figure 3 could be estimated. This

model does not assume existence of a cluster-level construct but does allow for

cluster-level variability on each measure with a saturated model of the covar-

iances among them. The within-cluster covariation is used to test the plausibility

of a within-cluster construct that may be used in the future to compare individ-

uals who share a cluster or to identify relations among constructs within a cluster.

For example, if future interest were in modeling whether a school principal might

use a student’s lactose intolerance scores to predict his family’s interest in

X1 X2 X3 X4

η1B

η1W η2W η3W η4W

η2B η3B η4B

ξW1

ϕW11

λλ
λ

λ

FIGURE 3. Within-cluster construct model.

Note: Each within-cluster h component also has a residual with variance y, not shown for

simplicity.
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participating in school lunch programs (relative to other students in the school),

then this model would be appropriate for validation of such scores.

2.2. Cluster as Unit of Interest

Item responses from individuals can also be used to measure constructs at the

cluster level and we will discuss two types of constructs: one that is a charac-

teristic of the cluster itself and one that is just a reflection of the construct at the

individual level. The nature of a latent construct at the cluster level can be

perplexing, and the importance of considering the interpretation of construct

meaning at each level was first brought forward by Cronbach (1976) and con-

ceptually developed in organizational research (see Chan, 1998; Kozlowski &

Klein, 2000) but has not been squarely addressed by many recent MCFA-applied

analyses (see, as e.g., Dedrick & Greenbaum, 2011; Klangphahol, Traiwichit-

khum, & Kanchanawasi, 2010). Marsh and colleagues (2012) highlighted this

oversight for many multilevel modelers who conduct contextual research using

structural equation models and suggested the differences between predictors that

represent climate constructs and contextual constructs at the cluster level, where

climate refers to a shared experience and context refers to the aggregation of

disparate individual responses. These constructs have also been differentiated by

the terms reflective and formative, respectively (Lüdtke, Marsh, Robitzsch, &

Trautwein, 2011). Kozlowski and Klein (2000) also differentiated cluster-level

constructs into two types, essentially with the same meaning as that provided by

Marsh et al. and labeled them as shared and configural, terms that we will use in

this article and are shown in our typology in Table 1 as Models 3 and 4, respec-

tively. The critical distinction between the two types of constructs has been well

formulated in organizational psychology and we detail the differences below.

2.2.1. Shared cluster constructs. Shared constructs can be measured using

individual-level item responses that are intended to measure a characteristic of

the cluster. For a cluster-level shared construct, one would expect individuals

within the cluster to respond in a similar way if the measurement tool provides

valid scores. For a truly shared construct, the measures would be isomorphic

across individuals in the cluster; given this isomorphism, then, the only measure

of interest at the cluster level would be the mean response of the individuals in

the cluster. As an example, to measure instructional quality, a characteristic of

the classroom and not of the individual student, responses to items from students

in the same classroom should be highly correlated; in fact, they should be seen as

interchangeable. A shared construct could therefore be validated by imposing

Model 3 in Table 1 as shown in Figure 4. Any variability and covariation of

responses at the within-cluster level are not of interest in this model; in fact, there

should be minimal variability found at the within-cluster level for a truly shared

construct. Bliese (2000) sets a very high criterion for considering a construct to
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be a shared one, stating that ‘‘in the absence of within-group agreement, one’s

measurement model would be unsupported’’ (p. 367). Assuming adequate model

fit,1 the researcher could then assess reliability using a between-cluster measure

of composite reliability as suggested by Geldhof et al. (2014), using Equation 2

but using only the cluster-level loading estimates and cluster-level factor var-

iance and residual variance estimates.

For manifest variables that are hypothesized to be shared, it has been suggested

that ICC(2) values (see Equation 8) of at least .7 represent acceptable levels of

reliability of a measured shared construct, while ICC(2) values between .5 and .7

represent marginal reliability and values below .5 would be considered poor (Klein

et al., 2000). The ICC(2) has not been extended to reliability estimation for a latent

construct and would require that a construct exists at both the within-cluster and

between-cluster levels (which is not the case for a shared construct model). How-

ever, we believe that a reasonable step in this shared construct modeling process

would be to examine ICC(2) values for each item in a proposed latent shared

measure to report along with the between-cluster composite reliability.

ξB1

X1 X2 X3 X4

ϕB11
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FIGURE 4. Shared cluster construct model.

Note: Each between-cluster h component also has a residual with variance yB, not shown

for simplicity.
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It should be noted that questionnaire item wording plays a crucial role in

measurement in multilevel contexts. Item wording can cloud the differentiation

of a construct as one that is individual or a shared cluster-level construct. When

measuring a shared construct, without proper item stem wording, a researcher

may obtain item responses that reflect both the shared and individual character-

istics. For example, a question that posits ‘‘This instructor presents material in

ways that keep it interesting’’ would likely elicit responses reflecting instructor

qualities. A question that posits ‘‘I find the class meetings interesting’’ would

likely reflect both a characteristic of the cluster (the teacher’s instructional abil-

ity) and the rater’s own intrinsic interest in the class topic. In the instrument

development process, careful attention should be paid to item wording for the

measurement of constructs at specific levels (Marsh et al., 2012).

In summary, a shared construct is measured when a researcher is interested in

the level of a cluster characteristic, using individuals within clusters as the

information source. If positing a shared cluster construct based on individual

responses in a nested data setting, a researcher might provide the ICC(1) and

ICC(2) estimates for each manifest response variable, evidence of support for the

hypothesized relation between manifest variables and the latent construct at the

cluster level via model fit information, and an estimate of the between-cluster

composite reliability as defined by Geldhof et al. (2014). Furthermore, strong

theoretical rationale should be provided if the CFA model also includes any

construct modeled at the within-cluster level, in which case the researcher should

consider the simultaneous shared and configural model (Model 5 in Table 1)

described in Section 2.2.3.

2.2.2. Configural cluster constructs. Configural constructs, shown as Model 4 in

Table 1, are cluster aggregates of individual constructs (e.g., average or disper-

sion of internalizing behavior of children within a family, motivation levels of

children within a school). It is not expected that individuals within a cluster

respond in the same way to the item measures, and their responses are not

interchangeable across individuals. Marsh et al. (2012) proposed that such a

model for these configural constructs could be measured as shown in the model

first displayed in Figure 2, where the focus in this model is on the mean of the

configural latent construct at the cluster level. Marsh et al. also suggested that if a

measure has an ICC(1) value of zero, suggesting no variability in the mean item

response across clusters, then there is little reason to continue with examining the

configural cluster-level construct (p. 115). We argue, however, that it may be of

interest to document the use of a measure to represent the variability in individual

hypothetical latent scores or patterns in those individual latent scores across

clusters. Marsh et al.’s advice ignores the idea that dispersion in the construct

may differ across clusters and represent an important cluster characteristic. In

fact, Kozlowski and Klein (2000) cautioned not to use the cluster mean alone to

represent these configural constructs. Meade and Eby (2007) proposed what they
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termed a dispersion model approach when undertaking multilevel construct vali-

dation but calculated manifest measures of group agreement or heterogeneity

outside of the CFA model. We propose, instead, to impose the model shown in

Figure 5. In this model, the variance of the within-cluster latent variable is

modeled as cluster-specific, accomplished by hypothesizing a random slope

between the factor of interest and a phantom factor (xW1) with unit variance and

estimated utilizing Bayesian estimation (Asparouhov & Muthén, 2012; Levy &

Choi, 2013). The model-implied variance of the within-cluster factor (ηW) is

simply b2
j for the jth cluster, and the cluster-specific standard deviation, bj,

appears as a latent factor at the cluster level. Of specific interest in this model

is whether the variance of the cluster-specific standard deviations, fb, differs

from zero, indicating that clusters differ in the dispersion of the individuals

within the cluster. This proposed dispersion model is but one option for modeling
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FIGURE 5. Configural cluster construct model with required cross-level constraints

(lW11 ¼ lB11, lW21 ¼ lB21, lW31 ¼ lB31, lW41 ¼ lB41) and with a measure of within-

cluster dispersion (b).

Note: Each item h component also has residual with variance yB or yW, not shown for

simplicity.
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cluster-specific differences in the distribution of the individual-level construct;

alternative methods might be developed to hypothesize other types of pattern

differences. This process of configural construct dispersion validation may be

important if a researcher wants to develop a measure that is sensitive enough that

it can be used to evaluate change in dispersion (e.g., if an intervention is intended

to change a group dynamic and results in greater cohesiveness of thought or

behavior).

With this modeling approach, there is an assumption that the cluster-level

factor, xb1, is not a cluster shared construct but merely reflects the cluster aggre-

gate of the individual construct at Level 1 (e.g., the average lactose intolerance

level of children in a school). Therefore, the vector of factor loadings should be

constrained across levels for each of the p observed variables (λW¼ λB). When a

construct is at the individual level but differences in the mean construct exist

across clusters because of spurious clustering (as was discussed in Section 2),

there should be no difference in the unstandardized loadings across levels as the

between-cluster relations just reflect the within-cluster relations, which has been

referred to as cross-level measurement invariance (Zyphur et al., 2008). In the

situation with spurious ICCs (such as our hypothetical lactose intolerance exam-

ple), Models 1, 2, and 4 are equally appropriate, depending on whether the

analyst desires an individual measure with broad applicability, a within-school

interpretation of the individual measure, or a measure of the aggregate lactose

intolerance (mean or dispersion) of students in the school, respectively.

In summary, a configural construct is defined as an aggregate of the measure-

ments of individuals who comprise the cluster. Measures of interest may include

dispersion of the construct as well as the mean level of the construct; the cluster

itself is not viewed as the source or reason for variability of an individual con-

struct and therefore between-cluster loadings are fixed to be the same as within-

cluster loadings. Validation evidence might include the fit of the model as well as

its ability to capture variability in dispersion across clusters.

2.2.3. Simultaneous shared and configural cluster constructs. It is possible that

more than one construct is required to adequately model the cluster-level covar-

iation. For example, suppose that teachers have provided ratings of their stu-

dents’ motivation using 4 items for each child, it is possible that some teachers

tend to rate more positively as compared to others. The obtained data would then

contain both sources of covariation at the cluster level (variation due to the fact

that in some classes, students are truly more motivated on average than in other

classes, and variation due to a rater effect because some teachers rate their

students more positively or more negatively on average). To appropriately model

these two sources of variation, both a shared (rater effect) construct and a con-

figural construct (to mirror the individual-level construct) are needed, as shown

in Figure 6. In this model, the factor loadings should be constrained across levels

for all p variables (λW¼ λB) as part of the configural construct (xB1). In addition,
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one or more shared constructs (xB2) can be modeled to explain additional covar-

iation among cluster-average item responses.

Researchers should be aware, however, that what may appear to be an addi-

tional shared construct at the cluster level may be reflective of what we call a

spurious contextual effect. Specifically, when constrained factor loadings across

levels yield relatively poor fit as compared to a model with unconstrained load-

ings in a configural model, the loadings may differ across clusters due to mea-

surement noninvariance across subpopulations within clusters, coupled with

differences in the proportion of members in the subpopulations across the clus-

ters. In the absence of auxiliary data to shed light on these possible subgroups, a

strong theoretical rationale would be important in inferring if there is a true

contextual effect (an additional shared construct) or a spurious contextual effect.

As with the spurious ICC, a researcher cannot statistically evaluate which of

these conditions (an additional shared construct or measurement noninvariance at

the within-cluster level) are correct, unless, of course, it is known which sub-

population characteristic is associated with any noninvariance and indicators of

that subpopulation are available. However, given the observational data, it can
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FIGURE 6. Simultaneous shared and configural cluster construct model with required

cross-level constraints (lW11 ¼ lB11, lW21 ¼ lB21, lW31 ¼ lB31, lW41 ¼ lB41).

Note: Each item h component also has residual with variance yB or yW, not shown for

simplicity.
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never be known that the appropriate subpopulations have been identified. In

Section 4 of this article, we provide a simple simulation to demonstrate this

spurious contextual effect caused by measurement noninvariance across subpo-

pulations within clusters.

2.3. Summary of Conceptual Issues

In this section, we have laid out five possible situations in the measurement of

constructs using item-level responses from individuals in nested data settings: an

individual-level construct with planned use (1) across a broad population or

(2) within a cluster, (3) a shared cluster-level construct, (4) a cluster-level con-

figural construct, and (5) a context with a simultaneous cluster-level shared and

configural construct. The CFA models for structural validation for each of these

are different, and careful thought is required to select the appropriate model, as

opposed to what appears to be the conventional approach of applying MCFA

simply because the data have a nested structure. Before considering the use of

MCFA to provide structural validation evidence, a researcher should have a well-

defined unit of interest and intended future use and hypothesized meaning of the

construct(s) at the level(s) of interest. While strong theoretical rationale is a

required condition to choose a proper CFA model, some model comparison

approaches such as testing random variances or loadings, and possible multiple

factors at the cluster level, can be utilized to capture various aspects of constructs

as well as to validate the structural features of constructs.

3. Illustrative Examples

The following examples are intended to highlight some of the issues that an

applied researcher might face when examining the structural validity of their

proposed measure. For simplicity and consistency in display, in all examples, we

present 4 possible items that might be used to measure a given construct; we

subjectively selected these items from a larger pool of questionnaire items in the

available data sets. We use two public-release data sets: Early Childhood Long-

itudinal Study of Kindergarten (ECLS-K; Tourangeau et al., 2009) and Education

Longitudinal Study of 2002 (ELS:2002; Ingels, Pratt, Rogers, Siegel, & Stutts,

2004). Although both ECLS-K and ELS:2002 involved a fairly complex sam-

pling structure, for simplicity, we assume here that the data were drawn from a

simple random sample of schools and a simple random sample of students or

teachers within each selected school. For advice on accommodating more com-

plex sampling structures with multilevel modeling for inference to the U.S.

population, see Asparouhov and Muthén (2006), Rabe-Hesketh and Skrondal

(2006), and Stapleton and Kang (2016). We conduct six analyses, demonstrating

assessment of the structural aspect of validity of a hypothesized individual con-

struct (importance of social skills) both across a broad population and for use

within clusters only, two hypothesized shared constructs (school violence and
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positive school culture), and a configural dispersion model of the hypothesized

importance of social skills construct. Finally, we show an example of a simulta-

neous shared and configural model of positive school culture (shared) and feel-

ings of support (configural).

3.1. Examples for Individual as Unit of Interest

Using the ECLS-K data, we investigated the plausibility of a single factor

underlying the responses to 4 items that tap a parent’s belief about social skills

needed for kindergarten. Specifically, parents of kindergartners were posed the

following question stem during a phone interview in the fall: ‘‘Now I’m going to

ask you how important you think it is for children to know or do certain things to

be ready for kindergarten. How important do you think it is that a child . . . ?’’

Four items posed the following concepts: ‘‘shares,’’ ‘‘draws,’’ ‘‘is calm,’’ and

‘‘communicates well.’’ The available response options were essential, very

important, somewhat important, not very important, and not important. We

hypothesized that a single construct importance of social skills was underlying

the responses to the 4 items. Such a construct would be potentially useful in

identifying parents prior to kindergarten for intervention, such as targeted eve-

ning orientations by the school district, or information sent home to targeted

parents of children in a school. Responses were obtained from 16,760 parents

of students nested within 948 schools (for simplicity in this demonstration,

missing data were treated by using listwise deletion for all analyses). Cluster

sizes ranged from 1 to 27 students per school, with an average of 17.7 students

per school. The response distribution on the 4 items is shown in Table 2 along

with ICC values. One might make the assumption that the responses to these

items were not subject to influence of the school environment (a reasonable

assumption had the data been collected in early September; however, these data

were collected between September and November). Assuming that the responses

were not subject to influence of the school environment specifies that any

TABLE 2.

Observed Distributions of the 4-Item Responses Across the Entire Sample

Item

Essential

(%)

Very

Important

(%)

Somewhat

Important

(%)

Not Very

Important

(%)

Not

Important

(%) ICC(1)

Shares 32.8 61.3 5.6 0.3 0.0 .04

Draws 22.1 51.0 24.0 2.5 0.4 .02

Is calm 24.3 58.3 16.1 1.1 0.2 .04

Communicates well 35.1 58.5 6.1 0.3 0.1 .04

Note. ICC ¼ intraclass correlation.
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dependency within school found on the parent beliefs item responses (as

reflected in the positive, yet minor, ICC values) is a result of parents of similar

attitudes living in the same area; therefore, if the parents were moved to another

school by an exogenous force, they would be expected to retain their same

attitudes regarding the importance of social skills to kindergarten. Given this

hypothesis of the lack of school influence on these item responses, a single-level

model would be appropriate and any dependency of the 16,760 responses within

948 clusters could be accommodated in the estimation of standard errors and

model fit statistics using a design-based approach to estimation.

Using Mplus 7.1, a single-level model of the four responses as item indicators of

a single construct was run using a linearization method to obtain appropriate

standard errors and adjusted w2 statistics.2 For comparison, a naı̈ve analysis was

also conducted, ignoring that the students were nested within schools. Model fit

results from these two models are shown in the first two columns of Table 3 and the

resulting parameter estimates are shown in Table 4. From the results in Table 3,

one can see that the adjustment for the (assumed spurious) ICC via the linearization

method resulted in fit statistics that suggest a better fitting model in terms of both

the model w2 statistic and those indices that use the w2 statistic in their calculations.

Furthermore, it can be noted in Table 4 that some of the factor loading

standard errors, as well as those for the item residual variances, are larger for

the design-based estimation as compared to that which assumed independence of

observations. From these results, one might conclude that a model with a single

latent construct of social skills importance is reasonable, given the very strong

indices of model fit: comparative fit index, root mean square error of approx-

imation, and standardized root mean square residual (SRMR). Given the signifi-

cance of the model w2 statistic, however, it can be assumed that the model is

misspecified to some extent. Examining possible model modifications, the larg-

est correlation between any of the item residuals would have been approximately

0.13 (share with communicates well), a value that is below typical criteria for

TABLE 3.

Model Fit Results From a One-Factor CFA of Individual Importance of Social Skills

Construct

Fit Statistic/

Index

Single-Level Design-Based

Adjusted

Single-Level Ignoring

the Clustering

Within-Cluster

Construct

Model w2 59.86 (df ¼ 2) 87.12 (df ¼ 2) 29.87 (df ¼ 2)

CFI 0.99 0.99 1.00

RMSEA (90% CI) .04 [.03, .05] .05 [.04, .06] .03

SRMR .01 .01 .01 (within)

.02 (between)

Note. CFA¼ confirmatory factor analysis; CFI¼ comparative fit index; RMSEA¼ root mean square

error of approximation; SRMR ¼ standardized root mean square residual.
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concluding local dependence (Yen, 1993). Using the item parameter estimates,

then, we might then opt to calculate composite reliability o, assuming a

unidimensional scale. Using the first or second set of estimates in Table 4 in

Equation 2, we obtain a reliability estimate of ô ¼:70 for a weighted composite

based on the 4-item responses.

Note that, unlike above where the construct is intended to be used in the future

across the population of students, the construct may instead be intended to be used

in the future only within clusters. For example, a principal may want to differ-

entiate parents of children in the school based on their higher or lower importance

ratings on social skills. If this is the intention, then an alternate model (Model 2 in

Table 1) would need to be evaluated, based on Figure 3. The model fit results for

this within-cluster measurement model are shown in the third column of Table 3

and the parameter estimates are shown in the third column of Table 4. Similar to

the single-level model fit, the fit appears good. Composite reliability is estimated

just slightly lower at .69 because of attenuation, given that the between-cluster

variance of the items has now been removed. Note that the unstandardized within-

cluster loadings would be expected to be the same in columns 1 and 3 when no

shared cluster-level construct is affecting item responses.

TABLE 4.

Parameter Estimates From a One-Factor CFA of Individual Importance of Social Skills

Construct

Single-Level Design-Based

Adjusted

Single-Level Ignoring

the Clustering

Within-Cluster

Construct

Parameter Estimate SE Estimate SE Estimate SE

Unstandardized parameter estimates

lshare 1.00 — 1.00 — 1.00 —

ldraws 1.17 0.026 1.17 0.023 1.18 0.027

lcalm 1.05 0.025 1.05 0.022 1.05 0.025

lcommun 0.90 0.020 0.90 0.017 0.89 0.021

wsocial 0.15 0.004 0.15 0.004 0.14 0.004

yshare 0.18 0.004 0.18 0.003 0.18 0.004

ydraws 0.39 0.007 0.39 0.006 0.38 0.007

ycalm 0.30 0.006 0.30 0.004 0.29 0.006

ycommun 0.23 0.005 0.23 0.003 0.22 0.005

Standardized loadings

lshare 0.67 0.67 0.66

ldraws 0.58 0.58 0.58

lcalm 0.59 0.59 0.59

lcommun 0.58 0.58 0.57

Note. CFA ¼ confirmatory factor analysis.
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3.2. Examples for Clusters as Unit of Interest

In this section, we present two examples that examine cluster-level shared

constructs and another two examples that investigate configural constructs

(aggregates of individual-level constructs).

3.2.1. Shared construct examples. Our first example is intended to demonstrate

an (unsuccessful) investigation of a cluster-level construct underlying the

responses to 4 items asking students to relay their experiences in terms of

school violence, using the ELS:2002 data. Specifically, 10th graders answered

questions regarding how often they had experienced some violent incidents

using the following 4 items: ‘‘Had something stolen at school,’’ ‘‘Someone

offered drugs at school,’’ ‘‘Someone threatened to hurt [10th grader] at

school,’’ ‘‘Someone hit [10th grader].’’ Suppose a researcher hypothesized that

these 4 items tapped a school-level school violence construct that is believed to

be shared among students within schools. Responses were obtained from

12,558 students nested within 748 schools. Cluster sizes ranged from 1 to 27

students, with an average of 16.7 students per school. The response distribu-

tions on the 4 items are shown in Table 5 along with the ICC values. ICC(1)

values were obtained from the Mplus software output, while ICC(2) values

were estimated using Equation 8.

Given the item ICC(1) values, it is difficult to justify the use of the current

school violence measure as a shared construct among the students in the same

school. This may indicate that such a construct does not exist or at least the

information obtained from students using the current items is not appropriate to

measure such a construct. In fact, examining the item wording should alert us to

possible concerns in the measurement of a shared construct. For the items

hypothesized to measure school violence, all item stems were self-referent, spe-

cifically asking students to reflect on their own experiences and one not neces-

sarily shared by all students; item responses would not be expected to be

isomorphic. We therefore decided that these items should not be considered

useful for measuring a school-level shared construct.

Our second example investigates a cluster-level shared factor underlying the

responses to 4 items that ask third-grade teachers’ opinions about positive school

culture using the ECLS-K data. Likert-type scale responses to the following 4

items were used to measure this shared construct: ‘‘Staff have school spirit,’’

‘‘Staff accept me as colleague,’’ ‘‘Staff learn/seek new ideas,’’ and ‘‘Parents

support school staff.’’ Responses were collected from 2,839 teachers nested

within 919 schools. Cluster sizes ranged from 1 to 19 teachers, with an average

of 3.1 teachers per school. The response distributions on the 4 items are shown in

Table 6, along with the ICC values.

For structural validation purposes, the shared construct factor model (Model 3 in

Table 1) shown in Figure 4 was posited for the positive school culture construct and
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the model fit results are reported in Table 7. The item ICC(1) values for manifest

variables ranged from 0.12 to 0.29 and ICC(2) estimates ranged from 0.30 to 0.56.

Depending on the number of raters who provide measures of the (hypothesized)

TABLE 6.

Observed Distributions of the 4-Item Responses for Positive School Culture

Item

Strongly

Disagree

(%)

Disagree

(%)

Neither Agree

nor Disagree

(%)

Agree

(%)

Strongly

Agree (%) ICC(1) ICC(2)

Have school

spirit

0.9 4.6 10.1 57.8 26.6 .29 .56

Accept as

colleague

0.5 0.8 3.6 51.3 43.8 .12 .30

Learn new

ideas

0.3 2.0 6.7 48.4 42.7 .20 .44

Parents support

staff

0.3 5.5 15.0 58.8 20.4 .27 .53

Note. ICC ¼ intraclass correlation.

TABLE 5.

Observed Distributions of the 4-Item Responses for School Violence

Item Never (%) Once or Twice (%) More than Twice (%) ICC(1) ICC(2)

Stolen 59.9 34.0 6.1 .05 .47

Offered drugs 77.2 14.0 8.8 .10 .65

Threatened 78.0 16.3 5.7 .06 .52

Hit 78.9 15.3 5.8 .05 .47

Note. ICC ¼ intraclass correlation.

TABLE 7.

Model Fit Results From Shared Construct Model of Positive School Culture

Fit Statistic/Index Estimate

Model w2 1.517 (df ¼ 2)

CFI 1.00

RMSEA .000

SRMR .02 (within)

.018 (between)

Note. CFI ¼ comparative fit index; RMSEA ¼ root mean square error of approximation; SRMR ¼
standardized root mean square residual.
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shared items, this example possibly satisfies the minimal standard for ICC(2) of 0.5

(Klein et al., 2000). For the item with the highest amount of clustering (Staff have

school spirit), given cluster sizes ranging from 1 to 19 teachers per school, the

reliability of any given school mean estimate on that item ranges from .29 to .89

(using Equation 8). It should be noted that 1 of the 4 items hypothesized to measure

positive school culture was a self-referent item (Staff accept me as a colleague) and,

in fact, had the lowest standardized factor loading and ICC values. Careful consid-

eration of referent in items considered to measure shared constructs is necessary.

From a measure development standpoint, if a shared construct is of interest, item

referents should focus on the cluster and not the individual.

Because a measure of a shared construct is intended to be used at the cluster

level, between-level composite reliability needs to be reported. The composite

reliability estimate was calculated using Equation 2 with the Level 2 parameter

estimates in Table 8 and was 0.90 for positive school culture. This large compo-

site reliability is partially due to very small between-level residual variances.

While values of ICC(1) and ICC(2) take within-level variance into account, the

cluster-level composite reliability considers only between-level variance and

between-level factor loadings. As a result, although ICC(1) and ICC(2) values,

for the most part, are not terribly large in this example, the level-specific

(between-cluster level) composite reliability estimate is high. Accordingly,

researchers should address both quantities and report them to discuss validity

and reliability of a shared cluster-level construct. Specifically, a researcher

should be wary about using cluster-level constructs based solely on evidence

of cluster-level composite reliability; it has been found to be positively biased

under conditions with low ICCs (Geldhof et al., 2014).

3.2.2. Configural construct examples. We now present configural model exam-

ples using the items intended to tap importance of social skills and the items that

TABLE 8.

Between-Level Parameter Estimates From Shared Construct Model of Positive School

Culture

Parameter Unstandardized Estimate SE Standardized Estimate SE

lspirit_b 1.000 — 0.417 0.027

laccept_b 0.477 0.057 0.199 0.022

llearn_b 0.650 0.058 0.271 0.024

lsupport_b 0.595 0.071 0.248 0.026

wpositive_b 0.174 0.023

yspirit_b 0.010 0.012

yaccept_b 0.010 0.005

ylearn_b 0.027 0.007

ysupport_b 0.096 0.013
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were used for positive school culture. Given our original example of the indi-

vidual measure of importance of social skills, it could be that a researcher was

interested in using a measure of this (individual level) construct as a configural

construct at the cluster level; he wants to model with an aggregate construct

regarding the parent opinions within schools. Knowing already that the ICC(1)

values for the 4 items are very low (ranging from .02 to .04), we cannot expect

substantial variability in the mean values of the items and thus the configural

construct mean across the clusters, but a researcher may be interested in whether

these items can capture differences in the dispersion of the individual-level factor

across clusters. Perhaps future research might be undertaken examining whether

schools in which there is a common parental understanding differ from schools

with heterogeneity in parental beliefs. From a measurement validation perspec-

tive, we need to demonstrate that the items can measure that discrepancy in

dispersion. Model 4 from Table 1, shown as Figure 5, was analyzed first with

only the measurement structure imposed (with both unconstrained and con-

strained loadings across levels) and then with a random variance of the latent

construct at Level 1.

Statistically, the unconstrained model had slightly better fit with change in

scaled w2 of 11.63, df ¼ 3, p ¼ .01. Given the sample size, however, it was

decided to retain the model with the constrained loadings for parsimony. The

estimates from these models are contained in the first two pairs of columns of

Table 9 and, as should be expected, are similar to the estimates obtained when

the construct was modeled as within-cluster only (see Column 3 of Table 4).

To add the random variance of importance of social skills to the model,

Bayesian estimation was used with default priors (for variances, the default

is an inverse gamma distribution (0, �1)), fixing (for identification) the aver-

age standard deviation of the latent construct within schools to 0.371 (or a

value of 0.138 for variance, based on the estimate shown in either of the first

two pairs of columns in Table 9) and allowing the model to estimate the

variability of the standard deviation across clusters. This model resulted in

loading and residual variances very similar to the model with fixed variance

but did result in a finding of statistically significant (p < .05) variability across

clusters with the variance in standard deviation of the latent construct within

schools as 0.002. A 95% plausible range of the values suggest that 95% of the

clusters would have standard deviations of importance of social skills between

0.28 and 0.46.

For another example of a configural construct, we revisit the positive

school culture measure that we earlier hypothesized to be a shared construct

but for which we found questionable support. Now, we hypothesize that the

cluster-level construct is only the reflection of an individual construct (which

we will call perception of support); the configural model shown in Figure 2

is needed to validate this hypothesized structure (Model 4 in Table 1). Two

different models were fitted: a configural factor model in which cross-level
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measurement invariance is assumed (constrained loading model) and another

model that allows cross-level measurement noninvariance (unconstrained

loading model). The unconstrained factor loading model yielded better fit

with a significant w2 difference test (change in scaled w2 was 41.13 with 3 df;

see Table 10). Additionally, the between-level SRMR for the constrained

model is substantial at 0.085. Although this phenomenon of configural model

misfit can be seen from another perspective (e.g., possible measurement

noninvariance across subpopulations at within clusters), we hypothesized that

there is a shared aspect in the cluster-level variability that is reflected in the

different factor loadings across levels. Accordingly, a hypothesized simulta-

neous shared and configural factor model (Model 5 from Table 1) as shown

in Figure 6 was fit to the same response data and the results are summarized

in Table 10 for robust model fit statistics and fit indices and Table 11 for

parameter estimates.

TABLE 9.

Unstandardized Parameter Estimates From Configural Models of Importance of Social

Skills

Constrained

Loadings Model

Unconstrained

Loadings Model

Constrained Loadings and

Random Variance

Parameter Estimate SE Estimate SE Estimate Posterior SD

lshare_w 1.000 — 1.000 — 1.000 —

ldraws_w 1.172 0.027 1.201 0.028 1.167 0.019

lcalm_w 1.052 0.025 1.066 0.026 1.048 0.014

lcommun_w 0.898 0.020 0.892 0.021 0.890 0.013

wsocial_w 0.138 0.004 0.136 0.004 0.138a —

yshare_w 0.179 0.004 0.180 0.004 0.178 0.003

ydraws_w 0.383 0.007 0.380 0.007 0.384 0.005

ycalm_w 0.292 0.006 0.290 0.006 0.291 0.004

ycommun_w 0.224 0.005 0.225 0.005 0.224 0.003

lshare_b 1.000 — 1.000 — 1.00 —

ldraws_b 1.172 0.027 0.541 0.182 1.167 0.019

lcalm_b 1.052 0.025 0.588 0.194 1.048 0.014

lcommun_b 0.898 0.020 1.024 0.130 0.890 0.013

wsocial_b 0.008 0.001 0.011 0.002 0.008 0.001

yshare_b 0.006 0.001 0.003 0.002 0.006 0.001

ydraws_b 0.004 0.002 0.006 0.002 0.003 0.001

ycalm_b 0.009 0.002 0.012 0.002 0.009 0.002

ycommun_b 0.006 0.001 0.002 0.002 0.005 0.001

Varð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fsocial w

q
Þ — — — — 0.002 0.0003

aEstimate is random across clusters.
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TABLE 10.

Model Fit Results From Multilevel Configural Models of Positive School Culture

(Perception of Support)

Fit Statistic/Index

Constrained

Loadings Model

Unconstrained

Loadings Model

Shared and Configural

Factor Model

Model w2 60.760 (df ¼ 7) 14.625 (df ¼ 4) 13.869 (df ¼ 4)

CFI .96 .99 .99

RMSEA .052 .031 .029

SRMR .029 (within),

.085(between)

.020 (within),

.021(between)

.020 (within),

.021(between)

Note. CFI ¼ comparative fit index; RMSEA ¼ root mean square error of approximation; SRMR ¼
standardized root mean square residual.

TABLE 11.

Unstandardized Parameter Estimates From Multilevel Configural and Simultaneous

Shared/Configural Model of Perception of Support/Positive School Culture

Constrained Loadings

Model

Unconstrained

Loadings Model

Shared and Configural

Construct Model

Parameter Estimate SE Estimate SE Estimate SE

lspirit_w 1.000 — 1.000 — 1 —

laccept_w 0.834 0.061 1.106 0.102 1.088 0.099

llearn_w 1.034 0.067 1.306 0.112 1.281 0.113

lsupport_w 0.686 0.044 0.725 0.066 0.723 0.062

wpositive_w 0.174 0.014 0.125 0.015 0.128 0.016

yspirit_w 0.295 0.019 0.317 0.018 0.314 0.018

yaccept_w 0.230 0.015 0.216 0.016 0.216 0.016

ylearn_w 0.211 0.015 0.195 0.016 0.197 0.016

ysupport_w 0.366 0.016 0.373 0.016 0.373 0.016

lspirit_b_conf 1.000 — 1.000 — 1 —

laccept_b_conf 0.834 0.061 0.457 0.058 1.088 0.099

llearn_b_conf 1.034 0.067 0.628 0.059 1.281 0.113

lsupport_b_conf 0.686 0.044 0.613 0.069 0.723 0.062

wpositive_b_conf 0.090 0.018 0.179 0.023 0.014 0.012

lspirit_b_shared — — — — 1 —

laccept_b_shared — — — — 2.590 0.446

llearn_b_shared — — — — 1.434 0.188

lsupport_b_shared — — — — 1.514 0.269

wpositive_b_shared — — — — 0.026 0.010

yspirit_b 0.054 0.011 0.006 0.012 0 —

yaccept_b 0.005 0.005 0.010 0.005 0.008 0.005

ylearn_b 0.017 0.007 0.027 0.007 0.026 0.007

ysupport_b 0.104 0.013 0.094 0.013 0.095 0.013
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This simultaneous shared and configural factor model fit is acceptable and

the fit indices are very similar to the unconstrained loading model. As noted

earlier, the variability of between-level residuals is very small and one of the

items (‘‘School has spirit’’) yields a nonpositive residual variance if two

factors are extracted at the cluster level. Therefore, the residual variance at

Level 2 for this item was fixed at zero in this case. This model has thus

provided support for the structural validity of a shared positive school culture

construct, above and beyond the reflection of individual differences on the

measure (the configural construct of perception of support). For the shared

construct in this model, the composite reliability estimate is .90, using esti-

mates found in Table 11.

In summary, in this section, we have presented six examples illustrating

structural validation models with nested data. In each case, the researcher needs

to identify the nature of the level of the construct prior to determining the

appropriate model. Although only briefly touched upon here, each analysis

involved several decisions and steps in terms of assessing fit and calculating

appropriate indices of reliability, such as level-specific o.

4. Simulation Demonstrations

In this section, we demonstrate two conditions where there appears to be a

clustering effect, but it is actually reflecting a spurious relation caused by dis-

proportional subpopulation membership across clusters coupled with subpopula-

tion differences in the latent mean and/or measurement model. We intend for

these small demonstrations to alert readers to the possible sources of variability

that may be unrelated to the construct of interest but caused by the sample

composition of clusters. For each demonstration, the following simple but illus-

trative situation is imposed:

1) There are four manifest items that reflect a unidimensional construct at the indi-

vidual level.

2) The construct is individual only with no cluster construct that causes individual

responses.

3) Two subpopulations exist within each cluster and, within each subpopulation,

factor variance and total item variance are set to a value of 1.0.

4) Across the sample (ignoring cluster membership), students are distributed equally

into the two subpopulations. This choice is made for convenience; results general-

ize to other distributions.

5) Data for 200 clusters are generated with each cluster containing 20 individuals.

Data were generated using SAS (Version 9.3) and ICC(1) values were calcu-

lated using analysis of variance components. All models were estimated in the

Mplus (Version 7.1) software using maximum likelihood estimation with robust

corrections to fit statistics and standard errors. To demonstrate how spurious
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ICCs and spurious contextual effects can appear, we manipulated three para-

meters: the variability across clusters in the proportions in the subpopulations,

the level of latent mean difference in the subpopulations, and the degree of

loading noninvariance across subpopulations. First, we manipulated the propor-

tion in Subpopulation 1 in the clusters (e.g., one half of clusters has 60% of the

individuals in Subpopulation 1 and the other half of clusters has only 40% of the

individuals in Subpopulation 1). Five conditions were examined: 50% versus

50%, 60% versus 40%, 70% versus 30%, 80% versus 20%, and 90% versus

10%. These distributions yield variances of the proportion of Subpopulation 1

(s2
p) of 0.0, 0.01, 0.04, 0.09, and 0.16, respectively. The variance of Subpopula-

tion 1 of the 0.0 condition would be expected to result in ICC(1) values of 0.0,

regardless of the level of latent mean differences across the subpopulations.

The second parameter manipulated was the level of latent mean difference

(k1� k2) between the two subpopulations. The differences in latent means were

generated to be 0, 1, 2, or 3 units. Given that latent factors within a subpopula-

tion were generated to have a variance of 1, the latent effect size (Hancock,

2001) of these differences can be seen as Cohen’s d ¼ 0, 1, 2, and 3 at the latent

mean level and between 0 and 2.1 at the manifest item level depending on the

item-factor loading. In this first simulation demonstration, loadings are equiv-

alent across the two subpopulations at values of 0.5, 0.5, 0.7, and 0.7 for the

4 items, respectively. Expected mean differences across the two populations at

the item level were thus 0, 0.5, 1, and 1.5 for Items 1 and 2 and 0, 0.7, 1.4, and

2.1 for Items 3 and 4. Using these two manipulated parameters, we demonstrate

the issue of spurious ICC(s).

In Table 12, we show the ICC(1) values for each item, averaged across 1,000

replications. It can be shown algebraically that, in the balanced case, the expected

value of the ICC(1) for a given item is a function of the variability of the

proportion of individuals in Subpopulation 1 in clusters and the size of the

difference in expected means across the two subpopulations:

E½ICCð1Þ� ¼ s2
pðm1 � m2Þ2= ðs2

m þ s2
wÞ; ð9Þ

where m1 is the expected value of the item mean for Subpopulation 1, m2 is the

expected value of the item mean for Subpopulation 2, s2
m is the variance of the

subpopulation means and s2
w is the subpopulation item variance, assumed constant

across subpopulations. It is worth noting that as subpopulations become more

disparate in their means, the total variability of the item (the denominator in

Equation 9) increases, however, this variability does not manifest in between-

cluster variability if the proportions of each subpopulation are equivalent across

clusters (s2
p ¼ 0). For the numerator (between-cluster variability) to be positive,

subpopulations must differ in their means and also the subpopulations must exist at

differential rates across the clusters. As shown in the top half of Table 12, ICC(1)

values that are typically used by researchers to assume that there is a clustering
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effect can easily be obtained if subpopulations exist and those subpopulations

differ in their latent means and differ in their allocation across the clusters.

Our conclusion here is that, although the construct is a measure of an

individual-level attribute only, just due to differential membership across clus-

ters, there may appear to be a clustering effect. Using empirical values of the

ICC(1) does not inform the analyst whether a construct is an individual one or

one that is influenced by cluster membership.

In further examining sources of spurious ICC(1) values, we also chose to

simulate the situation when there was measurement noninvariance across sub-

populations. Data were generated based on just one set of parameters: The 4

items’ respective loadings were 0.7, 0.7, 0.9, and 0.9 for one subpopulation and

0.3, 0.3, 0.5, and 0.5 for the other. We crossed this condition with the condition of

latent mean differences of 0, 1, 2, and 3. Resultant ICC(1) values are presented in

TABLE 12.

Average ICC(1) Values by Variability in Proportion of Subpopulations Across Clusters

and Subpopulation Means and Loadings Across 1,000 Replications

Condition

Variability of Proportion of Subpopulation 1

Across Clusters

s2
p ¼ 0 s2

p ¼ :01 s2
p ¼ :04 s2

p ¼ :09 s2
p ¼ :16

k and l same across subpopulation .00 .00 .00 .00 .00

k differs and l same across subpopulation (k1 � k2 ¼ 1, 2, or 3)

Items 1 and 2

m1 � m2 ¼ 0.5 �.00 .00 .01 .02 .04

m1 � m2 ¼ 1.0 �.01 .00 .02 .07 .12

m1 � m2 ¼ 1.5 �.02 �.00 .04 .12 .22

Items 3 and 4

m1 � m2 ¼ 0.7 �.01 .00 .01 .04 .07

m1 � m2 ¼ 1.4 �.02 .00 .04 .11 .20

m1 � m2 ¼ 2.1 �.03 �.01 .06 .17 .33

k same and l differs across

subpopulation (l1 ¼ 0.7, 0.9 and

l2 ¼ 0.3, 0.5)

.00 .00 .00 .01 .02

k and l differ across subpopulation (higher k has higher l)

Items 1 and 2

m1 � m2 ¼ 1.1 �.01 .00 .03 .08 .14

m1 � m2 ¼ 1.8 �.02 .00 .04 .11 .20

m1 � m2 ¼ 2.5 �.03 �.01 .07 .20 .38

Items 3 and 4

m1 � m2 ¼ 1.3 �.02 .00 .03 .10 .18

m1 � m2 ¼ 2.2 �.02 .00 .05 .15 .28

m1 � m2 ¼ 3.1 �.04 .00 .08 .23 .44
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the lower half of Table 12. As seen, the combination of latent mean differences

with measurement noninvariance can result in even greater ICC(1) values, given

the effects on estimated item means.

Of even more concern, however, is that model fit in a multilevel model can be

more difficult to establish as compared to a single-level model. As part of our

simulations, we ran three models: single level with a design-based correction to

both the standard errors and the w2 model fit statistic, a two-level configural

model with constrained cross-level loadings, and a two-level model with uncon-

strained loadings. For these same conditions shown in Table 12, where the

ICC(1) is positive due to differential subpopulation membership within clusters

and either subpopulation mean differences or measurement noninvariance, the

model fit information is shown in Table 13 for the high variability in proportion

distribution. The table for the other proportion variability condition that results

in substantial ICC(1) values is in the supplement materials, available in the

online version of the journal. In all cases, the single-level model with design-

based correction performed well; the highest model rejection rate for this

properly specified model was .07. It should be noted that parameter estimates,

specifically loading estimates, from this single-level model reflect the marginal

relationship based on a mixture of the two subpopulations.

Although the two-level models would be rejected more often than appropriate,

this finding is well established in that the likelihood ratio tests based on maxi-

mum likelihood do not perform well when ICC(1) values are small or the number

of individuals within clusters is below 50 (Hox & Maas, 2004; McNeish &

Stapleton, 2014; Schweig, 2014). Importantly, it should be noted that if the

multilevel model with constrained cross-level loadings fit as well as one with

unconstrained loadings, then the only differences across the clusters were dif-

ferences in means due to disproportionate Subpopulation 1 membership (see the

first three lines of Table 13). The constrained model would have been (inappro-

priately) rejected in favor of the unconstrained model, at most at a rate of .07,

close to a nominal a rate of .05, and thus generally would result in an appropriate

conclusion. However, anytime there is measurement noninvariance across sub-

populations, even when the latent means are the same, this noninvariance results

in an increased likelihood of finding model misfit at the between-cluster level (at

rates ranging from .15 to .61). The difference in the covariances of items across

subpopulations due to measurement noninvariance is being absorbed into the

between-cluster-level covariance matrix. In these cases, an analyst might incor-

rectly be tempted to claim that there is evidence of a shared construct in addition

to the configural construct that reflects the individual attributes within cluster.

Although very limited in scope, these small simulations were intended to show

the applied researcher that positive ICC(1) values and the rejection of MCFA models

with cross-level loading constraints do not necessarily reflect the existence of a

cluster-level construct. Simple explanations for those findings might possibly be

found in examining the subpopulations that may exist differentially within clusters,
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however, one can never know whether the appropriate subpopulations were identi-

fied. Applied researchers should be very careful to consider theory when hypothe-

sizing that a cluster-level construct underlies item responses and seek auxiliary data

regarding subpopulation membership that may help to inform whether differential

membership across clusters may be leading to the spurious clustering effect.

Discussion

In this article, we presented the decisions faced in the structural validation of

measures in a nested data context and provided options for validation of the

structure of a measure. First and foremost, the analyst must determine whether

interest lies in measurement at the individual level, cluster level, or possibly both.

As part of this decision regarding the level of measurement, an argument for that

level of measurement must be provided. If the measure is presumed to be at the

individual level only, the analyst should provide supporting data or make a

conceptual argument that any dependency in the measure reflects a spurious ICC

and is not a result of the influence of a true, shared, cluster construct. Although

not investigated here, when subpopulation data are not available, it may be

possible to use finite mixture models (Lubke, 2010) to investigate subpopulations

that may be leading to a spurious clustering effect. Alternately, if subpopulation

data are available, researchers might examine the ICC(1) values for measures

based on conditional item residuals (conditional on subpopulation membership).

If these residual ICC(1) values are near 0, then a single-level multiple indicator

multiple cause (MIMIC) model would address cluster dependency appropriately.

In fact, we ran a single-level MIMIC model on our simulated data for the

condition with measurement invariance across sub-populations but with latent

mean differences of k¼ 3 and the highest proportion of variability of subpopula-

tion membership across cluster. Across 1,000 replications, the model w2 was on

average 5.02 with degrees of freedom of 5; this result is similar to that obtained

with a design-based adjustment (average w2 of 5.03) suggesting that no depen-

dency remained to be addressed. It is impossible, however, for the researcher to

know whether there are informative unobserved subpopulations that have not

been accounted for in the modeling.

Conversely, if the measure is of interest at the cluster level, an argument

should be made for any cluster-level measure regarding whether it is just a

reflection of individual differences of persons within clusters (configural) or

whether it reflects a single characteristic of the cluster (shared). If a shared

construct, then an argument should be made regarding how the item wording

is targeting the cluster characteristic and how individuals are believed to be

interchangeable in its measurement (Bliese, 2000). If a researcher argues that a

construct is a configural construct, then the analyst must clearly lay out the

measures of interest regarding the construct, whether they be central tendency

or dispersion and provide an explanation of why this configuration is important
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to measure and how the measure might be used in the future. When a mix of both

shared and configural constructs might exist at the cluster level, expectations of

the degree of composition should be expressed as well as why, given item

wording, there are some elements of both shared and configural constructs.

During item development and testing phases, those items that are not clearly

reflecting desired shared or configural constructs should be addressed.

For reporting, the analyst has several options regarding the statistics to be

provided regarding the items and hypothesized construct; guidelines regarding

what should be reported for MCFA are in development (Kim, Dedrick, Cao, &

Ferron, under review), but we provide some tentative direction here. Descriptive

statistics that indicate the amount of clustering for the manifest variables, ICC(1)

and ICC(2), are helpful to describe the context, along with information about the

number of individuals per cluster, as this would impact the ICC(2) estimate for

any given cluster. For any proposed models, the researcher should evaluate fit of

the model as well as parameter estimates in order to examine whether resulting

estimates correspond to what has been theorized. Once the model is established,

estimates of composite reliability (o) can be calculated, but the trustworthiness

of this measure depends on the data conditions in terms of size of clusters and

level of ICC(1) (Geldhof et al., 2014). It was observed in our empirical demon-

strations that cluster-level composite reliability estimates can be large although

ICC(1) and ICC(2) values are not sufficiently large to provide support for a

cluster-level shared measure. Caution is required to interpret cluster-level mea-

sures under these conditions. Additional guidance on the approaches for valida-

tion at each level is given by van Mierlo, Vermunt, and Rutte (2009). Further

research, building on Geldhof et al. (2014), would be helpful to clarify guidelines

in terms of the levels of o needed to support valid inference at the cluster level,

especially in light of lower values of ICCs.

One additional interesting aspect of cluster-level constructs is that, given the

same items, the meaning of the construct is not necessarily stationary in its status

as a configural or shared construct. For example, a simple reflection of an individual

construct such as achievement can be seen as a configural construct at the school

level, especially if measured at the start of a school year, perhaps on the first day of

kindergarten. However, if the individual becomes fully immersed in a cluster cul-

ture, such as when the students in the school come to know that the school has high

(or low) expectations of achievement, between-cluster variability would increase

and any covariation among items would reflect both a configural construct and a

shared construct. Documentation of the ability of a measure to move from configural

only to both configural and shared can be used to demonstrate a measure’s sensi-

tivity in measuring cultural shifts (or malleability of the construct over time). Further

research is needed to investigate such model performance for validation.

There are possible extensions or alterations to these models that could be

considered for data that are not self-report or obtained from other types of

research design. For example, with teacher ratings of students’ characteristics
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within classrooms, given the same rater for each classroom, there would be an

expected shared ‘‘rater’’ effect at the cluster level, along with any individual-

level (and configural) construct. Our investigation here has been on cross-

sectional data, but repeated measures would also provide interesting opportuni-

ties for the structural validation of trait-state CFA models (Kenny & Zautra,

2001) that are not currently examined in a multilevel framework. Additionally,

it should be noted that our models assumed that items were fixed, as typical with

questionnaire data; extending the framework beyond this scenario would involve

additional considerations.

The models presented here represent relatively simple extensions of current

thinking in MCFA, and our examples have been correspondingly simple. Like-

wise, the structural validity discussed here is but one aspect of validity of a

measure. More research is needed on the conditions under which each of these

models yield robust estimates and appropriate inference to increase their

likelihood of being used for instrument development for both individual- and

cluster-level constructs as well as the required validation evidence that should

accompany such hypothesized constructs.
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Notes

1. Evaluating model fit in a multilevel structural model is not a simple exercise

and research in this area is ongoing (see Ryu & West, 2009; Schweig, 2014).

2. This model assumed that the responses were continuous and multivariate

normal, which is clearly violated, given the categorical response options.

Thus, the model was also analyzed treating the items as ordered categorical

with an adjusted weighted least squares estimator, and no differences in

inference regarding measure structure were found.
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